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Abstract

We use the theory of bond pricing to study the long term discount rate.
Century-long historical records of 3 month bonds, 10 year bonds, and infla-
tion allow us to estimate real interest rates for the UK and the US. Real
interest rates are negative about a third of the time and the real yield curves
are inverted more than a third of the time, sometimes by substantial amounts.
This rules out most of the standard bond pricing models, which are designed
for nominal rates that are assumed to be positive. We therefore use the
Ornstein-Uhlenbeck model with risk aversion, which allows negative rates
and gives a good match to inversions of the yield curve. We derive the
discount function using the method of Fourier transforms and fit it to the
historical data. The estimated long term discount rate is 1.7% for the UK
and 2.2% for the US. The value of 1.4% used by Stern is less than a stan-
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dard deviation from our estimated long run return rate for the UK, and less
than two standard deviations of the estimated value for the US. This lends
support for substantial immediate spending to combat climate change.

Keywords:
Discounting, environment, interest rates, inflation, Ornstein-Uhlenbeck
process

1. Introduction

For environmental problems such as global warming, future costs must
be balanced against present costs (Dasgupta, 2004). This is traditionally
done by using an exponential discount function with a constant discount
rate. The choice of discount rate has generated a major controversy as to
the urgency for immediate action. At low discount rates it makes sense to
expend resources today to stave off environmental disasters a century in the
future. At high discount rates costly action today for the same purpose would
appear to be foolish.

The choice of discount rate is perhaps the biggest factor influencing the
debate on the urgency of the response to global warming (Arrow et al., 2013).
In an influential report on climate change commissioned by the UK govern-
ment, Stern (2006) uses a discounting rate of 1.4%, which on a 100 year
horizon implies a present value of 25% (meaning the future is worth 25% as
much as the present). In contrast, Nordhaus (2007b) argues for a discount
rate of 4%, which implies a present value of 2%, and at other times has
advocated rates as high as 6% (Nordhaus, 2007a), which implies a present
value of 0.3%. Stern has been widely criticized for using such a low rate
(Nordhaus, 2007b,a; Dasgupta, 2006; Mendelsohn, 2006; Weitzman, 2007;
Nordhaus, 2008). This issue surfaced again with the Calderon report in July
2014. What is the right number? And is it even correct to use an exponential
function?

The normative approach to choosing the discount rate attempts to derive
the right discount from axiomatic principles of justice, or from utility the-
ory and assumptions about growth (Stern, 2014a,b). There are a variety of
reasons postulated to cause the need for discounting, including impatience,
economic growth, and declining marginal utility. These are embedded in
the Ramsey formula (Ramsey, 1928), which forms the basis for a standard
approach to discounting the distant future (Arrow et al., 2012). The nor-



mative approach helps us understand the underlying reasons for discounting,
but it is difficult to make reliable quantitative estimates about the correct
rate because the derivations depend on factors that are difficult to measure
empirically.

Here we take a positive approach. Assuming that costs and benefits can
be reduced to monetary values, the discounting problem is equivalent to bond
pricing. A bond is an instrument that one can purchase now that delivers a
payment in the future. Similarly, to combat climate change we must spend
now in order to receive environmental and economic benefits in the future.
If we can quantify both the expenditure required now and the likely cost of
inaction in the future, then the price of the corresponding bond gives us an
indication of the discount factor.!

The interest rate for bonds as a function of their time to maturity is
called the yield curve. Most bonds have a time to maturity of 30 years or
less, but for environmental problems such as climate change we need to know
the discount 100 years or more into the future. We don’t have data on bonds
of such long maturity. Thus we are faced with the problem of inferring the
price of long maturity bonds from data on much shorter maturity bonds.
Furthermore, the yield curve fluctuates substantially from year to year, so
we need sufficient historical time series for reliable statistical inference. In
order to do this we need a reasonable model for real interest rates at different
maturities.

In addition to the factors that determine the overall level of short term
rates, there are two effects influencing long term rates that must be taken
into account. The first of these is risk aversion. The far future is less certain
than the near future, so all else equal, we expect that longer term bonds bear
greater risk, which should imply higher interest rates.

The second effect is more subtle, and is due to the fact that interest rates
are uncertain and highly persistent. This effect was originally pointed out in
the environmental context? by Weitzman (1998) and Gollier et al. (2008).
Weitzman and Gollier considered a stylized example in which future real rates

LOf course, there are always intangible effects that are difficult to quantify in monetary
terms, and one should be suspicious of any procedure that reduces the existence of a
species or a human life to a dollar value. But it is nonetheless informative to see what a
purely monetary analysis implies.

%In fact this effect has been known much longer in the context of bond pricing, see
Vasicek (1977). This was also pointed out in a general context by Dybvig et al. (1996).



are unknown today, but starting tomorrow will be fixed forever, i.e. they will
be completely persistent, at one of a finite number of values. In this case
the long run rate will be dominated by the lowest value, since asymptotically
all the other discount factors will be negligible in comparison. To see this
concretely, consider two possible rates, r; and 79, with r; > ry, and assume
they have equal probability. Then the average discount factor at time ¢ in the
future is D(t) = 1(e"""+e~""). Note that since the sum of two exponentials
is not an exponential, the discounting function is no longer an exponential.
But for ¢ sufficiently large D(t) ~ 3e~™', i.e. the discount function becomes
approximately exponential with the lower interest rate. This illustrates that
when interest rates are uncertain and persistent, lower interest rates tend
to dominate. Although this is a stylized example, we will show in a more
realistic example how this effect can cause interest rates to decrease with
maturity.

This example also illustrates how the presence of heterogeneous rates
mean that the discount function is no longer exponential. In fact devia-
tions from exponential behavior can occur even at large times. Farmer and
Geanakoplos (2009) used the reflection principle to prove that when the inter-
est rate r(t) follows a geometric random walk, the discount function decays
as K/+/t for large t, where K is a constant. They called this hyperbolic
discounting because the discount factor D(t) obeys the equation of an hy-
perbola. In the large time limit a hyperbolic function is greater than any
exponentially decaying function, showing that there is no positive long run
rate of interest in the geometric random walk model. The hyperbola assigns
an infinite value to any permanent positive flow of consumption, meaning
that the infinite future is infinitely valuable.

Nonetheless, anecdotal evidence suggests that long-term exponential be-
havior is the typical case. Farmer et al. (2015) examined a variety of different
processes, including more general lognormal processes, the Heston process,
and the Ornstein-Uhlenbeck process. They found that the case of the sim-
ple log-normal process studied by Farmer and Geanakoplos was the only
one that did not display long-term exponential behavior. All the other ex-
amples deviated from exponential behavior for short times, but eventually
converged to an exponential function. This suggests that, while the tran-
sient non-exponential behavior can be important for a few decades, the most
important question is the long-term discount rate.

To return to the factors that influence the long term rate, both risk aver-
sion and the uncertainty /persistence effect act together. Risk aversion pushes
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long term rates up while uncertainty /persistence pulls them down, and in
general the yield curve is not monotonic. This is born out in the data in the
variation of the yield curve from year to year, and we will also show that it
can also be true on average.

We are building on earlier empirical work. Litterman et al. (1991), Newell
and Pizer (2003), and Groom et al. (2007) simulated more realistic stochastic
interest rate processes than Weitzman and Gollier, out to horizons of a few
hundred years, leaving aside the asymptotic (infinite horizon) behavior of
real rates. They found that as the horizon gets longer, the long run rate of
interest tends to get lower. Groom et al (2007) noted that the drop in rates
depends on uncertainty and persistence, depending also on the particular
model and parameters. Both Groom et al. and Newell and Pizer calibrated
their models against long historical time series of 10 year bonds.

We add to this previous work in several ways. We study century-long
records of the prices of 3 month bonds, 10 year bonds, and inflation, for
both the USA and the United Kingdom. We find that real interest rates are
negative about a quarter of the time, often by substantial amounts. Previous
authors have ignored this fact, and instead forced historical interest rates to
be positive in order to be consistent with their models.

We instead take the view that negative real interest rates are a fact that
cannot be ignored. This leads us to choose the Ornstein-Uhlenbeck (OU)
model, which is compatible with negative real interest rates. This can be
written

dr(t) = —alr(t) — m]dt + kdW (t), (1)

where W (t) is the standard Wiener process. The parameter k is the volatility
and the parameter o determines how fast r(t) reverts to the mean rate m,
i.e. the reciprocal 1/« is the characteristic reversion time. In the model real
interest rates can be arbitrarily negative but they are always pulled back to
the rate m.

The formula for the yield curve for the OU model has been derived in
the finance literature (see, for instance, Brigo and Mercurio (2006); Duffie
(2001); Piazzesi (2009))). We derive this more simply using Fourier trans-
form methods. The previous work in environmental discounting cited above
was based on numerical simulations. In contrast, we take advantage of the
existence of closed form solutions, which allows us to better estimate the long
term discount rate.

When the OU model is used in the finance literature, r(t) generally refers



to the nominal interest rate and the mean reversion parameter « is taken to
be so strong that r(t) goes negative with probability close to zero.> When
using nominal rates the existence of negative rates for the OU model is viewed
as a disadvantage. But given the fact that real rates are often negative, the
logic is reversed. The prevalence of negative real rates makes many of the
standard nominal interest rate models inappropriate vehicles for studying
real rates, and the OU becomes an obvious choice.

In addition to our treatment of negative rates, we also give an original
contribution regarding properly taking risk aversion into account. The previ-
ous work described above was calibrated against a single maturity bond (10
years). Risk aversion is a well-accepted notion in bond pricing, and one would
expect models that neglect it to underestimate long term interest rates. We
fix this by taking risk aversion into account and fit the resulting model to
both 3 month and 10 year bond yields, which provide us with two points on
the yield curve. Empirically we find that the yield curve is inverted (i.e. the
10 year real interest rate is lower than the 3 month real interest rate) about
a third of the time, for both the US. and the UK. This is roughly what our
estimated models predict as well.

The net result of our analysis is that we find that, because of the un-
certainty /persistence effect, the long range discount rate is close to the real
interest rate of ten year bonds. This means that for the UK we find a long
term discount rate of 1.7%.

This is very close to the discount rate used by Stern, which is comfortably
inside the confidence interval of our estimate. For the U.S. we find the higher
rate of 2.2%. For the U.S. our model-consistent error analysis indicates a 5%
estimated quantile of 1.5%, which is slightly higher than Stern’s value, but
still fairly close.

This paper is organized as follows: In Section 2 we present a derivation
of the discount function for the OU process. In Section 3 we present our
empirical results, and in Section 4 we conclude.

3Davidson, Song, and Tippett (2015) examined a square root Ornstein Uhlenbeck model
in which dz(t) = —ax(t)dt + kdW (t) and r(t) = z?(t). In the square root Ornstein
Uhlenbeck process interest rates can never go negative, and they are pulled down toward
0, which is an absorbing state. Davidson et al. (2015) show that despite the fact that
interest rates tend to drift toward zero, the expected short interest rate is positive and
greater than the long run rate. They solve for the long rate by studying a partial differential
equation using the Feynman-Kac functional, which is quite different from our approach.



2. The process of discounting in continuous time

We now derive the form of the yield curve for the OU model. In the
continuous limit the discount function is

D@zEFm<i£MﬂMﬂ, @)

where ty is an arbitrary initial time and the expectation E[-] is an average
over all possible instantaneous real rate trajectories up to time ¢. This is
formally identical to the problem of pricing bonds. The price B(t|to + t) of
a zero-coupon bond issued at time ¢y, with unit payoff and maturing at time
to+1t (t>0)is

mmm+w:Ekm<—/Ewuﬁ}, (3)
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where n(t) is the nominal rate. The difference between the two problems is
that for discounting we are interested in the real interest rate r(t), whereas
for bond pricing we are typically interested in the nominal rate n(t).

2.1. The general framework

Following the same strategy as for bonds, we compute D(t) via a stochas-
tic process model for the time evolution of 7(t). The simplest and most
common hypothesis consists in assuming that real rates are described by a
Markovian process with continuous sample paths. That is, we assume r(t) is
a diffusion process whose time evolution is governed by a stochastic differen-
tial equation of the form

dr(t) = f(r)dt + g(r)dW (t), (4)

where f(r) is the drift, g(r) > 0 is the noise intensity and W (t) is the standard
Wiener process.
In terms of the cumulative process



the discount function is given by
D(t) = E [e™"].

Therefore

D(t):/ dr/ e "p(x,r, t|zo, 0, to)d, (6)

where p(x,r, t|zo, 79, to) is the probability density function (PDF) of the bidi-
mensional diffusion process (z(t),r(t)). The measure corresponding to the
function p is sometimes referred to as the data generating measure. From
Eqgs. (4) and (5) we see that this bidimensional process is defined by the
following pair of stochastic differential equations

dz(t) = r(t)dt, (7)
dr(t) = f(r) + g(r)dW (), (8)

which implies that the joint density obeys the Fokker-Planck equation (FPE)

L D]+ ) )

Since z(typ) = 0 and r(to) = o, the initial condition of this equation is
p(@, 7, to|wo, o, to) = 0(x)0(r — 70). (10)

Note that f(r) and g(r) do not depend on time explicitly and the process
r(t) is time homogeneous. It is therefore invariant under time translations
and we can set ty = 0 without loss of generality.

2.2. The Ornstein-Uhlenbeck process

We now make explicit choices for the functions f and g. For the reasons
given in the introduction, we focus on the OU process, which is a standard
model from finance that allows negative rates. In finance the OU process
was originally proposed by Vasicek (1977) and is sometimes referred to as
the Vasicek model. Tt is a diffusion process with linear drift and constant
noise intensity

f(r) =—a(r—m), g(r) =k. (11)

The process is thus governed by Equation (1). As we will soon show, the
OU process has a stationary normal distribution with mean and standard
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deviation (m,o). Letting 7o = r(0) be the initial return, in the large time
limit the probability density function® p(r,t|rg) has mean m and variance
o? = k?/2a.

2.3. Adding risk aversion

In the context of bond pricing, if investors are risk neutral then prices
can reasonably be modeled based on the data generating measure p. This
is sometimes called the Local Expectation Hypothesis (LEH) (Cox et al.,
1981; Gilles and Leroy, 1986). However a more general assumption is that
investors are sensitive to risk, in which case bonds can no longer be priced
this way.?> Following a standard procedure for bond pricing (Vasicek, 1977;
Duffie, 2001; Piazzesi, 2009) we take risk into account by adjusting the drift
term to account for risk, according to

f(r) = —a(r —m) + g(r)q(r), (12)

where ¢ = q(r) > 0 is the market price of risk.® This raises the effective
interest rate, which in the context of bond pricing means that investors are
compensated for taking increased risk. The most common assumption con-
sists in taking ¢ constant,” in which case the adjusted drift becomes

f(r) = —a(r —m?), (13)

4The probability distribution was first obtained by G. E. Uhlenbeck and L. S. Ornstein
in 1930 (Uhlenbeck and Ornstein, 1930). In the Appendix A we present an alternative
derivation of p(r,t|ro) within the context of the present work.

SInstead they are priced with an artificial probability density funciton, p*, which is
called either the risk-neutral probability measure or the risk-correcting measure. The two
measures p and p* are related by the market price of risk, which is the extra return per
unit of risk that investors demand to bear risk.

6The market price of risk may also depend on the current time, ¢ = ¢(r,t), but here
we assume stationarity.

It is also possible to solve the general case in which the market price of risk grows
linearly with the rate, i.e. ¢(r) = ar + b, where @ > 0 and b are free parameters, in which
case the adjusted drift is f(r) = —a*(r — m*), where

*

« am + bk
o = a — ka, m'= ———

a—ka



where
m*=m + % (14)
o}
The result is that the effective mean interest rate m* is increased relative to
the historically observed interest rate m by a constant amount that depends
on the volatility, the reversion rate, and the market price of risk.
The solution is found by solving the Fokker-Planck equation (9), which
becomes 5 L
* 2 p
—T—+OC—T [(r—m )p} +§k5 W’ (15)
with the initial condition (10). The problem is more conveniently addressed
by working with the characteristic function, that is, the Fourier transform of
the joint density

ﬁ(wla w2, t‘ro) = / e_iWde$ / e_iW2rp($7 r, t]ro)dr. (16)
—0o0 —0o0
Transforming Eq. (15) results in the simpler equation:

o oD . 1 -
8_]t) — (Wl — aw2)8—f; — <zm Qws + 51{7200%) b, (17>

with (cf. Eq. (10)) ‘
Plwr, wa, 0|rg) = e~ ™27,

The solution of this initial-value problem is given by the Gaussian function
Plwrwn,t) = exp{—Alwr, o} = Blwn, thoo = Cwr,8) |, (18)

where the expressions for A(wy,t), B(wi,t), and C(wy,t) are obtained in

Appendix A.
Once we know the characteristic function p obtaining the discount func-
tion is straightforward. Comparing Eqs. (6) and (17) we see that

D(t) = p(w1 = —i,ws = 0,1). (19)
In our case D(t) = exp{—C(—i,t)} which, after using the expression for

C(wq,t) given in the Appendix A, results in a tractable expression for the
discount rate.

10



We now make a change of notation: For simplicity we have so far assumed
that the discount functions is computed at a fixed time ¢, = 0 with initial
interest rate ry for a time ¢ in the future, whereas in what follows we will want
to evaluate the discount at different times. Thus we change the notation so
that ty — t and t — 7, and ro — r(¢). The discount function is then

" 2% ar —2(1— ™) + % (1- 62(”)]' (20)

When the maturity time 7 is small we can approximate D(7) by expanding
the exponentials to first order using a Taylor series approximation. This
yields In D(7) ~ r(t)r, as expected. In contrast, in the limit 7 — oo the
discount function becomes independent of the initial condition. It decays
exponentially and can be written in the form

D(7) >~ e =", (21)
where ) 2
q
=m+ &5 22
" me a 202 (22)

Thus we see that the long-run discount rate depends on the historical rate
m, but this is shifted by two terms. The first shift raises the long-run rate
due to the market price of risk. The second shift lowers it by an amount given
by the ratio of uncertainty (as measured by k) and persistence (as measured
by «). We can trivially rewrite the equation above as

k k
w=m+—(g—=—). 2
r m+a(q 2@) (23)

This makes it clear that whether or not the overall shift in the long-run
discount rate is positive or negative depends on the size of the market price
of risk in relation to the ratio of the volatility parameter and the reversion
rate.

It is not surprising that the market price of risk raises the long term
rate, but it is not so obvious that uncertainty and persistence can lower it.
Indeed for the OU process it can make it arbitrarily small. For any given
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mean interest rate m, by varying k and «, the long-run discount rate r, can
take on any value less than m, including negative values, while at the same
time the standard deviation o can also be made to take on any arbitrary
positive value. In particular, by choosing the appropriate (k,«), we can
make r., arbitrarily far below m and o arbitrarily small. The probability
that r(t) < r can be arbitrarily small, even when r,, < m (see Appendix
A). Deducing the correct parameters (m, o) of the stationary distribution of
short run interest rates does not determine r., by itself; on the contrary, any
T < m is consistent with them. To infer r, from the data one must also
tease out the mean reversion parameter . Holding the long run distribution
(m, o) constant, by raising the persistence parameter 1/« it is possible to
lower ro, to any desired level. Of course, this can always be offset by the
market price of risk.

It is even possible for the long-run rate to be negative. This is due to the
amplification of negative real interest rates r(t). Computation of the discount
function involves an average over exponentials, rather than the exponential
of an average. As a result, periods where interest rates are negative are
amplified, and can easily dominate periods where interest rates are large and
positive, even if the negative rates are rarer and weaker. It does not take
many such periods to substantially reduce the long run interest rate.

To summarize, in the OU model the long-run discounting rate can be
much lower than the mean, and indeed can correspond to low interest rates
that are rarely observed.

3. Empirical results

We now estimate the OU model for real interest rates on historical data.
For this purpose we have collected long historical time series for both short
and long run nominal interest rates, as well as inflation, for the United King-
dom and the United States. The properties of the data are summarized in
Table 1. For each country we have both three month and ten year interest
rates, as well as an inflation index.

3.1. Estimation of real interest rates

We estimate real interest rates as nominal rates corrected by inflation.
This is done via an application of Fisher’s equation, subtracting realized

12



Time series Identifier frequency from to # records

United Kingdom 3 month Treasuries =~ ITGBR3D monthly 12/31/1900 12/31/2012 113
United Kingdom 10 year bonds IDGBRD annual 12/31/1694  12/31/2012 309
UK inflation index CPGBRM annual 12/31/1694 12/31/2012 309
United States 3 month Treasury bills ITUSA3D monthly 01/31/1920 10/30/2012 93
United States 10 year bonds TRUSGIOM  annual 12/31/1820  10/30/2012 183
United States inflation index CPUSAM annual 12/31/1820  10/30/2012 183

Table 1: Data sets used in our main analysis.

inflation from nominal interest rates.® An alternative way to model real rates
by the OU process could have been the modeling of nominal and inflation
rates separately; that is, nominal rates by a positive process (for example
the Feller process as in the CIR model (Cox et al., 1985; Farmer et al.,
2015)) and inflation —which may assume positive and negative values — by
the OU process. Such a procedure would need to take into account possible
correlations between bond prices and inflation. It is not clear a priori which
procedure is better, and the procedure we follow has the virtue of being
simpler.

We transform the annual rates into logarithmic rates and denote the
resulting time series by y(t|7) (with the maturity time 7 equal to either 3
month or 10 years). Nominal rates n(t) are then estimated by n(t) ~ y(t|7)
(see Appendix B for details). The inflation rate i(t) is estimated through the
Consumer Price Index (CPI) as

i(t) ~ %m {%} | (24)

where I(t) is the aggregated inflation up to time ¢, and 7 = 10 years (Ap-
pendix B). Finally, the real interest rate r(t) is defined by

r(t) = n(t) — i(t). (25)

The recording frequency for each country is either annual or quarterly. For
ten year government bonds, which pay out over a ten year period, we smooth
inflation rates with a ten year forward moving average, and subtract the

8Freeman et al (2013), among others, pursue an alternative, using cointegration meth-
ods to tease out real rates.
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annualized inflation index from the annualized nominal rate to compute the
real interest rate. For the three month bond rates, in contrast, we use the
inflation adjustment for the corresponding year (since we do not have inflation
adjustments at quarterly frequency). Figure 1 shows nominal rates, inflation
and real interest rates for 3 month bonds for the UK and the US, and Figure
2 compares 3 month and 10 year real interest rates.”

3.2. Empirical properties of the data

One of the most striking features of these time series is that real interest
rates are often negative, in some cases by substantial amounts and for long
periods of time. This is evident in the histograms seen in Figure 3. Real
3 month interest rates for the UK are negative 32% of the time, and there
are four distinct periods where they drop below or nearly reach —10%. Ten
year real interest rates for the UK are negative 38% of the time. For the
US real 3 month interest rates are also negative 32% of the time, dropping
below —10% during WWII, and 10 year real interest rates are negative 30%
of the time. Given that real interest rates are negative about a third of the
time, this makes it clear that models such as the log normal process or the
CIR model (Cox at al, 1985; Farmer et al 2015) that assume that rates are
non-negative are very far from being appropriate. We therefore confine our
empirical work to the Ornstein-Uhlenbeck model.

From Figure 3 it is apparent that the distribution of interest rates is heavy
tailed. This is particularly true for the short term interest rates. The heavy
tails are apparent both because of the excess in the center of the distribution
and from the observations in the tail that exceed the normal distribution.
Nonetheless, the deviations are not extreme, and the OU process, which has
a normal distribution, is at least a reasonable first approximation.

Another striking feature is that the yield curve is often inverted, i.e. the
10 year real interest rate is often lower than the 3 month rate. For the UK
the yield curve is inverted slightly more than 50% of the time and for the
US it is inverted 32% of the time. Inversions of the yield curve are obviously
important for understanding very long term rates. (See Figure 5, where we
compare the empirical inversions to those in the OU model).

9This procedure assumes that people correctly forecast inflation, i.e. in absence of any
knowledge of behavioral bias we are assuming perfect rationality.
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Figure 1: (Color online) Time series for the three month treasury bills for
the UK (top) and US (bottom). The inflation index is shown in green (long
dashes), the nominal interest rate in blue (short dashes), and the real in-
terest rate is shown as a black solid line. Real interest rates display large
fluctuations and negative rates are not uncommon.

15



™
2
)
™ N
= o
7]
[
Q o Il \
£ \
E —
o
<
1
I I I I I I
1900 1920 1940 1960 1980 2000
time (years)
UsS
™ | — 3m
() _———-
o 10y
5 N _
= o
7]
o —
2 o —— VAN
c S-F. ,/ \v/"-\_.’,\ ~
% _ ol A\ A ‘/Ag;/\-(\/\m ! A"
4] -1 VA
S 4
1
I I I I I
1920 1940 1960 1980 2000

time (years)

Figure 2: Time series of real interest rates for the UK (top) and the US
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the three month real interest rates from Figure 1 are shown with solid lines. A
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Country m Min Max | k£ Min Max a Min Max

United Kingdom | 0.88 —0.4 35|82 1.8 156|093 0.2 1.4
United States 083 —-12 22|57 25 105|074 03 1.3

Table 2: Raw estimates of parameters of the risk-free Ornstein-Uhlenbeck
model for the United Kingdom (UK) and the United States (US) based on
the annually sampled time series of three-month real interest rates. We use
annual units. The Min and Max columns correspond to the minimum and
the maximum value of the parameters obtained by splitting the time series
into four blocks of equal length and estimating the parameters separately in
each block. For better estimates see Table 3.

3.3. Parameter estimation

The OU model with a constant price of risk has four parameters that must
be estimated, m, k, & and ¢q. The 3 month rates are much less sensitive to the
risk parameter ¢ than the 10 year rates, so by making the approximation that
the 3 month is equivalent to the instantaneous process, one can estimate m,
k and «a from the 3 month rate time series alone. The parameters obtained
this way are shown in Table 2.10

To provide a feeling for the robustness of the parameter estimation, we
divide the time series into four blocks of equal size and estimate the three
parameters separately for each block.!! The maximum and minimum value
obtained for each parameter is listed in Table 2. The variations are large,
indicating some combination of autocorrelation, non-stationarity and heavy
tails. This is evident from the fact that the range of variation in the mean
for the four samples is more than three standard deviations.'?

10The values in Table 2 are based on the maximum likelihood estimators derived in
Brigo and Mercurio (2006)(see Appendix C).

1With the exception of the parameter « , which is always estimated using the complete
data set, as the time series in each block are too short. The quoted uncertainties in «
are simply the standard least square error value computed when fitting an exponential
autocorrelation function of the real interest time series.

I21f the annual samples were independent, the standard error for measuring the mean
would be SE = ¢/1/25, where o = k/\/ﬂ For the UK this means SE ~ 1.2%. For the
four groups of 25 the range of observed values is 3.9%, i.e. a bit more than three standard
deviations. For the US (with 20 trials in each sample) SE = 1.0% and the range is 3.4%,
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To measure the ¢ parameter we need to utilize the 10 year real interest
rate series as well. The average of the 3 month and 10 year interest rates
provide two values that, when used with Eq. (20), gives two independent
equations.’® If we hold k and o fixed based on the previous estimate, we can
use these equations to estimate ¢ and improve the estimate of m, obtaining
a yield curve that passes precisely through the mean interest rates of the 3
month and 10 year bonds.!

The estimates obtained in this manner are slightly distorted because the
3 month bond is only sampled annually, and because we have treated it as
though it were an instantaneous rate. We can estimate the size of this bias
by simulating the instantaneous process, which we approximate as having
daily frequency. We then create a surrogate time series for the 3 month
real interest rate time series using Eq. (20) with 7 = 0.25 and r(¢) as the
initial condition at each time ¢. We then mimic the procedure employed for
the real data by estimating the parameters based on the surrogate 3 month
rate, sampled at annual frequency. We can then adjust the parameters of
the instantaneous process to roughly match, on average, those observed for
the real data (i.e. so the estimated values based on the surrogate 3 month
series match those of the observed 3 month series). The parameters with
the bias corrected are given in Table 3. See Appendix C for more details on
the procedure we followed in order to correct the bias. The resulting shift in
parameters is small, as can be seen by comparing Tables 2 and 3. The main
difference is in the parameter «, which sets the timescale for mean reversion;
this changes by a little more than 10%.%

about three and a half standard deviations.

BPutting the average historical 3 month real interest rate and the average 10 year real
interest rate on the left hand side of Eq. (20), and substituting ¢ = 0.25 and ¢ = 10 on the
right hand side, gives us two equations. If we take a and k as given, these can be used to
estimate the two unknowns m and g. We assume that r(¢f) = m in Eq. (20), i.e. that the
mean historical interest rate is equal to the current rate.

lRecall that m is the mean value of the instantaneous process, which is generally
different than the average 3 month rate, though we find that the two values are not very
different.

BQur numerical experiments indicate that the main source of the bias is the annual
sampling. The parameter « sets the timescale for mean reversion, so it is not surprising
that it is affected by this.
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Co m 5% 95% | k 5% 95% a 5% 95% q 5%

UK 08 -092 26|89 7.6 104|082 047 1.26|0.13 —-0.04 0.34
USA | 0.83 —0.85 23|58 49 6.8]0.65 0.36 1.06 |0.20 0.02 043

Table 3: Refined estimates of the parameters of the instantaneous Ornstein-
Uhlenbeck process using the procedure described in the text. m and k are
in percent.

3.4. Comparisons of the model to the data

We now make some comparisons of the simulated OU model model to
the real data. Similarly to the procedure for the 3 month rates, we create
simulated 10 year rates using Eq. (20) with r(¢) as the initial condition at
each time t. A comparison shows that the standard deviation of the 3 month
rates matches reasonably well, but the standard deviation of the simulated
rates is much lower than that of the 10 year rates. We correct for this by
adding IID normally distributed noise to make the standard deviation of the
simulated and real series match. We also neglect the 10 year smoothing of the
10 year inflation data. The simulated result has a lower correlation between
3 month and 10 year rates than the real data; for the UK the correlations are
21% (simulated) vs. 39% real and for the US 24% (simulated) vs. 59% (real).
However the distributions for both 3 month and 10 years match reasonably
well. Figure 4 shows the simulated 3 month and 10 year interest rate time
series, which should be compared to the real data shown in Figure 2. Not
surprisingly, since the 3 month simulated rates are normally distributed, they
lack the extreme values observed in the real data.

The OU model does a good job of capturing the frequency of negative
interest rates and yield curve inversions. Table 4 compares the frequency
of negative interest rates for the real data and the simulation for both 3
month and 10 year rates. In Figure 5 we present a histogram of yield curve
inversions for both the data and the model for the UK. (The US histogram
is qualitatively similar so we do not present it here). We use the difference
between the 10 year real interest rate and the 3 month interest rate as our
measure of inversion. The inversions of the data are somewhat more heavy
tailed than those of the model, but the agreement is surprisingly good. The
real UK yield curve is inverted roughly 50% of the time and the simulated
yield curves are inverted 46% of the time. Similarly the real US yield curves
is inverted 32% of the time and the simulated yield curves are inverted 41%
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Figure 4: A simulation of the 3 month and 10 year interest rates for the UK
(above) and the US (below) using the OU process. Compare to Figure 2.
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Country 3 month (data) 3 month (model) 10 year (data) 10 year (model)

UK 32% 43% 38% 34%
USA 32% 42% 30% 26%

Table 4: A comparison of the percentage of the time real interest rates are
negative for both the UK and the US in the simulation compared to the data.
(The simulation values are averaged over 1000 simulations).

of the time.

3.5. Estimating confidence intervals

With such a short time series it is difficult to estimate confidence intervals
by methods such as bootstrapping.'® However, if we assume that the model is
well-specified, then we can at least compute model-consistent error estimates.
The width of the resulting confidence intervals can be regarded as lower
bounds on the width of the true confidence intervals, and provide a fecling
for the magnitude of the estimation errors.

We repeatedly simulate the instantaneous process r(t) using the param-
eters estimated from the data and generate 3 month and 10 year series as
described above. In order to accurately mimic the constraints imposed by the
data we sample the simulated series at an annual frequency. We then apply
the estimation procedure described above to estimate the four parameters.
Doing this 1000 times allows us to compute the 5% and 95% quantiles for
each parameter. The results are shown in Table 3.

The estimated discount functions, together with their confidence inter-
vals, are shown in Figure 6. The uncertainty intervals are estimated by
repeatedly simulating the instantaneous, 3 month and 10 year processes as
described above, applying the estimation procedure to the simulated data,
and computing the discount function at each time interval. This is repeated
1000 times to estimate the 5% and 95% quantiles.

We are finally ready to present our key result. The long term interest rate
Too is computed using Eq. (22) based on the values in Table 4. The results

16This is particularly true for o, where the time series properties of the data matter, so
that one would need to do a block bootstrap. There are not very many blocks of sufficient
length.

22



UK 1900-2002

0.08
|

O real data
— O simulation

Density
0.04 0.06
l l

0.02
|
|

0.00
|

-30 -20 -10 0 10 20 30

r(10y)-r(3m), ppt

Figure 5: (Color online) Histogram comparing yield curve inversions in the
simulated vs. real data for the UK. We measure yield curve inversion based on
the difference between the 10 year interest rate and the three month interest
rate; positive values indicate a normal yield curve and negative values an
inverted yield curve. Interest rates are measured in percent. The real data
are shown in grey, the simulation in white. The real data are heavier tailed,

but the agreement is otherwise reasonably good.
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Country ro 5% 95%
UK 1.69 0.76 2.63
USA 221 135 3.07

Table 5: Long term interest rate ro, for the United Kingdom and the United
States of America, measured in percent, as well as the 5% and 95% quantiles.

are presented in Table 5. The mean long term rate is roo = 1.7% for the
UK and 2.2% for the US. The uncertainties are substantial, with standard
deviations of roughly 0.45% in both cases.

4. Concluding remarks

Using historical bond prices to infer long term discount rates is not just a
trivial matter of extrapolating mean interest rates, but rather one must take
several non-trivial factors into account. To begin with, because real interest
rates are so often substantially negative, one must use a model that permits
negative rates. This leads us to the Ornstein-Uhlenbeck model. While the
presence of negative rates in this model is viewed as a liability for pricing
nominal rates, for pricing real rates this becomes a virtue. Another factor
that must be taken into account is the market price of risk, which tends
to raise longer term rates. Finally one must properly take into account the
uncertainty and persistence of interest rates, which tends to lower the long-
term discount rate. The use of the OU model accommodates all of these
factors. When we estimate the OU model and compare it to the real data,
we get a good match for several essential properties, such as the frequencies
of negative rates and yield curve inversions.

Our results indicate that the long term interest rate used by Stern is
supported by the historical data. His value of 1.4% is less than a standard
deviation below the estimated long term rate for the UK of 1.7%, and just
under two standard deviations of the US long term rate!” of 2.2%. In contrast,
the interest rate of 4% used by Nordhaus is not supported, as it is well above
the 95% confidence intervals of 2.6 for the UK and 3.1 for the US. Our

170ne should bear in mind that these are the model-consistent confidence intervals; to
the extent that the model is mis-specified, these would be widened.
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estimates of 1.7% (UK) and 2.2% (US) are compatible with the rates very
recently estimated by Giglio, Maggiori and Stroebel (2015). They use data
from UK housing markets during 20042013 and Singapore during 1995-2013
to estimate an annual discount rate of 2.6 % for payments more than 100
years in the future.'®

These results could potentially be improved on in several ways. One
would be to acquire more data. This could include data for more countries,
longer term bonds, or inflation-indexed bonds. Another possible improve-
ment would be to extend the model to better capture the nonstationarity
and/or heavy tailed behavior observed in the data.

To conclude, we have demonstrated that historical data indicates that
the long-term discount rate is probably not very large. While the error bars
remain large, a value of 2% or less seems plausible, corresponding to a present
value of about 14% for a payment received 100 years in the future. Values
as high as 4% do not appear to be consistent with the historical data.
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Appendix A. Discount function for the Ornstein-Uhlenbeck model

We have seen in the main text that when the rate is described by an OU
process the joint characteristic function p(wi,ws,t|r) obeys the first-order
partial differential equation (cf Eq. (17))

op op ) .
8_]t9 = (wy — OzLUQ)a_i - (me2 + _k2W§> p, (A1)

with initial condition _
P(wr, wa, 0|rg) = 2. (A.2)

181f we were able to take the observed nonstationarity and/or heavy tails into account,
we believe it would decrease the mean values by boosting the uncertainty/persistence
effect.
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We look for a solution of this initial value problem in the form of a Gaussian
density:

Plwy, wa, t) = exp{—A(wl, t)ws — B(wy, t)wy — C’(wl,t)}, (A.3)

where A(ws,t), B(wi,t), and C(wy,t) are unknown functions to be consis-
tently determined. Substituting Eq. (A.3) into Eq. (A.1), identifying like
powers in wy and taking into account Eq. (A.2), we find that these functions
satisfy the following set of differential equations

A= —20A - k)2, A(wi,0) = 0; (A.4)
B =—aB + 2w A — ima, B(wy,0) = irg; (A.5)
C = wlB, C(wl, 0) =0. (A6>

Equation (A.4) is a first-order linear differential equation that can be readily

solved giving
2

Awy,t) = élf_a (1—e?"), (A7)

Substituting this expression for A(ws,t) into Eq. (A.5) results in another
first-order equation for B(wy,t), whose solution reads

/{:2w1
202

B(wy, t) = irge”* + <1 —2e " + e_2o‘t) + im(l - e_o‘t). (A.8)

Finally, the direct integration of Eq. (A.6) yields the expression for C'(wy, t)

2,2
Clwi,t) = iwlroé (1—e®) + ];:31 [at —2(1—e)+ % (1- 6_2”)]
+ inuw {t — é (1- e“t)} : (A.9)

From Eq. (19) we see that the effective discount is given by the charac-
teristic function, p(wy, we, t|rg), evaluated at the points w; = —i and we = 0.
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Thus from Eqgs. (A.3) and (A.9) we obtain

To —at k? —at 1 —2at
lnD(t):—E(l—e ) + ﬁat—Q(l—e )+§(1—e )

- m {t L (1- e—a’f)] . (A.10)

o

Negative rates

As pointed out in the main text, a characteristic of the OU model is the
possibility of attaining negative values. This probability is given by
0
Plr < 0,t|ry) = / p(r, tlro)dr, (A11)

— 0

where p(r, t|rg) is the probability density function of the rate process. This
is given by the marginal density

p(r, tlro) = / Pz, 7, tro)d.

—0o0

The characteristic function of the rate is then related to the characteristic
function of the bidimensional process (z(t),r(t)) by the simple relation

Plwa, t[ro) = plwr = 0, wa, t[ro).
From Eq. (A.3) and Egs. (A.7)-(A.9) we have
2

P(wa, tlro) = exp{—f—a (1—e™)ws —i[roe ™ +m(1—e )] wg}.

After Fourier inversion we get the Gaussian density

(@/F)" o {_ (a/k)[r — roe= — m(1 — e—at)]2} |

(1 — e=2at) 1 —e2

p(r, t|T0) =

(A.12)
The probability for r(¢) to be negative, Eq. (A.11), is then given by

a/k)Y2rge 4+ m(l — e
P(r < 0,trg) = %Erfe (( /F) [\/ﬁtmfl )}) : (A.13)

28



where Erfc(z) is the complementary error function. Note that as ¢ increases
(in fact starting at ¢ > « ') this probability is well approximated by the
stationary probability, defined as

P = lim P(r < 0,t]r).
t—00

That is

S

1
P = éErfc (m oz/k‘2> . (A.14)
In terms of the dimensionless parameters p and  defined by!?
w=mja, k=k/a’?, (A.15)

this probability reduces to

s

P = %Erfc (u/K) . (A.16)

Let us now see the behavior of P!~ for the cases (i) u < Kk and (ii) p > k.

i) If the normal rate p is smaller than rate’s volatility x, we use the series
1
expansion

Erfe(z) =1 — %z +O(2%).

Hence,
1 1

PO = 5 = (/) + O(2/ ). (A.17)
For ;1/k sufficiently small, this probability approaches 1/2. In other words,
rates are positive or negative with almost equal probability. Note that this
corresponds to the situation in which noise dominates over the mean. (ii)
When fluctuations around the normal level are smaller than the normal level
itself, Kk < p, we use the asymptotic approximation

Frfo(z) ~ f/;_m [1 +0 (%)} ,

9We call ;1 the dimensionless normal level and » the dimensionless volatility.
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and

1 y 2/,.2
PO~ (5> s (A.18)

Therefore, for mild fluctuations around the mean the probability of negative
rates is exponentially small.

Rates below the long-run rate

It is also interesting to know the probability that real rates r(t) are below
the long-run rate r,. This is given by

Too

P (t) = Prob{r(t) < roo} = / p(r, t|ro)dr

[e.¢]
In the stationary regime, t — 0o, we have

P — / " pr)dr, (A.19)

o0

where p(r) is the stationary PDF. For the OU model p(r) is obtained from
Eq. (A.12) after taking the limit ¢ — oo:

1 o\ /2 2 /1.2
_ - (= —a(r—m)?/k
p(r) 7 (k‘2) e : (A.20)

Substituting Eq. (A.20) into Eq. (A.19), taking into account the definition of
the long-run rate [cf. Eq. (22) with ¢ = 0 ?°] and some simple manipulations
finally yield

k
P 2Erfc (2 3/2) (A.21)
Note that
/-
20[3/2 20
where we have used the definition (22). Hence
P =t [ (A.22)
0o = = TIiC .
2 2x

20Considering the market price of risk ¢ requires only minor modifications.
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which gives P, in terms of the ratio between the differential of rates, m —
Teo, and two times the strength of the reversion to the mean. Using the
asymptotic estimates of the complementary error function discussed above,
we see that this probability is exponentially small if |m — ro| — oo with o
fixed, or if @ — 0 with a fixed differential of rates |m — r.

Appendix B. Empirical estimates. The market price of risk

Recall that real rates are defined as the difference between nominal rates
and inflation rates (cf. Eq. (25)):

r(t) = n(t) —i(t).
We now discuss how to estimate n(t) and i(t) from empirical data .

Nominal rates

Let B(t|t + 7) be the price at time t of a goverment bond maturing at
time ¢ + 7 (7 > 0) with unit maturity, B(t[t) = 1. The instantaneous rate of
return, b(t|t + 7), of this bond is

1 dB(t|t + 1)
(tlt+ 1) dt ’

b(tlt+ 1) = 5

so that,
t+7
B(t|t + ) = exp [—/ b(t|t')dt’] : (B.1)
t

It is also useful to define the “yield to maturity”, y(t|7) as

1

y(t|t) = —=In B(t|t + 1),
T

or, equivalently (cf. Eq. (B.1))

y(tr) = %/t i (B.2)

which shows that the yield to maturity is the time average over the maturing
period 7 of the instantaneous rate of return.

Let us remark that the data at our disposal are not the historical values
of B(t|t 4+ 7) but the annual interest rate of the zero-coupon bond B(¢|7). In
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this case we have

1
B(tlt+7) = T BET (B.3)
so that
y(t|T) = In[1 + B(t|7)]. (B.4)
The spot or nominal rate n(t) is defined as
n(t) = lim y(t[r) = b(t[t), (B.5)

where the expression on the right is obtained after substituting for Eq. (B.2)
and solving the limit.
Nominal rates are thus estimated by the yield,

n(t) ~y(t|r) = In[l + B(t|7)] (B.6)

and, attending to definition (B.5), the shorter 7 is, the better the estimation
for n(t).

Inflation rates

The inflation rate i(¢) is estimated by the ex post mean inflation rate over
a period of time 7, i(t|7):

i(t|T) = %ln I(j(—;;—),

(B.7)

where [(t) is the aggregated inflation up to time ¢. The relation between [(t)
and the Consumer Price Index (CPI) is

T7—1

It+7) =1 [J[1+Ct+ )], (B.8)

J=0

where C(t) is the time series of the empirical CPI. The instantaneous rate of
inflation i(t) is, therefore, estimated by the quantity (¢ + 7) which written
in terms of the CPI reads

i(t) ~i(t+7) = liln[u(}(tﬂ)] (B.9)

-
J=0
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The market price of risk

The concepts of risk neutral probabilities and MPR were developed for
bonds and nominal rates. They can be, nonetheless, extended formally to
real rates despite practical difficulties because real rates are not tradable and,
thus, an empirical basis for constructing a risk neutral measure is lacking.

Let us recall that real rates r(t) are estimated by the quantity r(¢|7):

r(t) ~r(t|r) = y(t|r) —i(t|r), (B.10)

where y(t|7) is the yield to maturity 7 for a zero-coupon bond B(t|t 4 7) and
i(t|7) is the inflation rate over period 7.
From theoretical point of view the instantaneous real rate r(t) is defined
by
r(t) = 112% r(t|T).

This leads us to take the shortest possible yield, y(¢|7), at our disposal (7 = 3
months) to construct a proxy of the real spot rate 7.

Obviously the spot rate r(t) is random, so is the quantity r(¢|7). Let us
denote by p and o2 the average and variance of r(¢|7)?!. Note that in the
most general situation p = p(t,r|7) and o = o(t,7|7) depend on current
time ¢, rate r, and maturing interval 7 (Vasicek, 1977).

The risk premium is defined by the difference g = p(t, r|7) —r. Since this
excess return depends on the maturity time there can be arbitrage opportu-
nities by buying and selling bonds at different maturities (Vasicek, 1977). It
can be shown that these arbitrage opportunities are ruled out as long as the
Sharpe ratio of the excess return,

s

q(r,)

is independent of the maturity time 7 (Vasicek, 1977). This ratio is called

2lFrom empirical data these statistics are estimated by

N

! t Ly t 2
o (), UNN;[T(h)—/L],

t=1

where N is the number of samples.
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the market price of risk.?? It depends in general of the current time ¢ and
the spot rate r although the most common and feasible assumption is that ¢
is constant or, at most, a function of r.

Appendix C. Parameter estimation and uncertainties

Parameter estimation

Let us recall that the OU model is defined by means of the linear stochas-
tic differential equation

dr(t) = —a(r — m)dt + kdW (t)

whose solution is

t
r(t) = r(to)e ) m [1 — e 0] k:/ e g (t),

to

where %, is an arbitrary initial time. In what follows we will assume that the
process is in the stationary regime. That is to say, we assume the process
started in the infinite past (i.e., {p = —oc) and all transient effects have faded

away. Therefore,
t

r(t) =m+ k:/ e~ aw (). (C.1)
—0o0

The parameter m is easily estimated by noting that since the Wiener process

has zero mean the (stationary) mean value of the rate is

Elr(t)] = m. (C.2)

The estimation of parameters a and k is based on the correlation function,
defined by
K(t=1') =E[(r(t) = m)(r{t') —m)].

220ther authors, as for instance Hull et al. (2014), define the MPR as A\ = —g; that is,

r—p
.

A=
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From Egs. (C.1) and (C.2) we write
, t t
K(t —t) = k2e o+t )/ et / e“E[dW (t1)dW (t2)].

Taking into account that
E[dW(tl)dW@QH - 5<t1 - tg)dtldtg,

where §(-) is the Dirac delta function, and performing the integration over

to, we have
t

K(t —t) = ke o0+ / Ot —ty)e* ! dt,
—00
where O(+) is the Heaviside step function. In the evaluation the integral we
must take into account whether ¢t > ¢’ or t < t’. It is a simple matter to see
that the final result reads

A K —alt—t'|
K(t =) = 5e elt, (C.3)

Let us incidentally note that this equation proves that the correlation time
of the OU process is given by a~!. Indeed, the correlation time, 7., of any
stationary random process with correlation function K(7) is defined by the
time integral of K (7)/K(0). In our case

_ L _ 1!
Tczm/(; K(T)dT—u. (C.4)

Evaluating the empirical auto-correlation from data and fitting it by an ex-
ponential (cf. Eq. (C.3)) we estimate o (measured in years units) for each
country.

The third and last parameter, k, is obtained from the (empirical) standard
deviation,

o =E[(r(t) —m)?],

which is readily given by the correlation function since 02 = K(0) = k%/(20).
Hence

k=o0v2a. (C.5)

We estimate these quantities for the three month interest rates using the
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maximum likelihood procedure given in (Brigo and Mercurio, 2006).

Correcting for the bias from using 8 month rates sampled at annual frequency

Our parameter estimation process that corrects for the bias introduced
by using the 3 month rate as an approximation to the instantaneous rate,
and by sampling it at annual frequency, has the following steps:

1.

Estimate parameters using the historical 3 month and 10 year data as
described in the main text.

Simulate the instantaneous process (which we approximate as a daily
process) using the parameters inferred in step (1) to generate a sim-
ulated time series r(f) whose length matches that of the real data
(roughly 100 years for the UK and 80 years for the US).

Construct simulated 3 month and 10 year time series based on Eq. (20)
with 7 = 0.25 and 7 = 10, using the time series for r(¢) from step 1 as
the initial condition for each time t.

Estimate m, k and a on the simulated 3 month series (sampled at
annual frequency).

Repeat steps (2-4) for 1000 times and compute the average value of
each parameter under the estimation process of step (4). This yields
systematic shifts in the parameters relative to those estimated on the
historical data, making it clear that the estimation process is biased.
Correct for this bias by adjusting the parameters of the instantaneous
process by the magnitude of the average shift, so that the estimation
process for the simulated 3 month bond times series roughly matches
the values estimated from the historical series.
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